- (b) Each propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral grounded. - (c) The neutral of each grounded generation and distribution system must be grounded at the generator switchboard and have the ground connection accessible for checking insulation resistance of the generator to ground before the generator is connected to the bus, except the neutral of an emergency power generation system must be grounded with: - (1) No direct ground connection at the emergency switchboard; - (2) The neutral bus permanently connected to the neutral bus on the main switchboard: and - (3) No switch, circuit breaker, or fuse in the neutral conductor of the bus-tie feeder connecting the emergency switchboard to the main switchboard. - (d) On a metallic vessel, a grounded alternating current system must be grounded to the hull. On a nonmetallic vessel, the neutral must be connected to the common ground, except that aluminum grounding conductors must not be used. ## §183.378 Ungrounded systems. Each ungrounded system must be provided with a suitably sensitive ground detection system located at the respective switchboard that provides continuous indication of circuit status to ground with a provision to momentarily remove the indicating device from the reference ground. [CGD 85-080, 62 FR 51358, Sept. 30, 1997] EFFECTIVE DATE NOTE: By CGD 85-080, 62 FR 51358, Sept. 30, 1997, §183.378 was added, effective Oct. 30, 1997. ## §183.380 Overcurrent protection. - (a) Overcurrent protection must be provided for each ungrounded conductor for the purpose of opening the electric circuit if the current reaches a value that causes an excessive or dangerous temperature in the conductor or conductor insulation. - (b) The grounded conductor of a circuit must not be disconnected by a switch or circuit breaker, unless the ungrounded conductors are simultaneously disconnected. - (c) A conductor of a control, interlock, or indicator circuit, such as a conductor for an instrument, pilot light, ground detector light, or potential transformer, must be protected by an overcurrent device. - (d) Conductors must be protected in accordance with their current carrying capacities. If the allowable current carrying capacity does not correspond to a standard device size, the next larger overcurrent device may be used provided it does not exceed 150 percent of the conductor current carrying capacity. - (e) Steering gear control system circuits must be protected against short circuit. - (f) Each steering gear feeder circuit must be protected by a circuit breaker that meets the requirements of paragraphs (a) and (b) of §111.93–11 in subchapter J of this chapter. - (g) Each lighting branch circuit must be protected against overcurrent either by fuses or circuit breakers rated at not more than 30 amperes. - (h) Overcurrent devices capable of carrying the starting current of the motor must be installed to protect motors, motor conductors, and control apparatus against: - (1) Overcurrent due to short circuits or ground faults; and - (2) Overload due to motor running overcurrent, in accordance with §111.70-1 in subchapter J of this chapter. A protective device integral with the motor, which is responsive to both motor current and temperature, may be used. - (i) An emergency switch must be provided in the normally ungrounded main supply conductor from a battery. The switch must be accessible and located as close to the battery as practicable. - (j) Disconnect means must be provided on the supply side of and adjacent to all fuses for the purpose of deenergizing the fuses for inspection and maintenance purposes. - (k) If the disconnect means is not within sight of the equipment that the circuit supplies, means must be provided for locking the disconnect device in the open position. - (l) Fuses must be of the cartridge type only and be listed by Underwriters Laboratories or another independent